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Abstract
The purpose of this paper is to explore ways to generate random walks and
polygons in confinement with a bias toward stiffness. Here the stiffness refers
to the curvature angle between two consecutive edges along the random walk
or polygon. The stiffer the walk (polygon), the smaller this angle on average.
Thus random walks and polygons with an elevated stiffness have lower than
expected curvatures. The authors introduced and studied several generation
algorithms with a stiffness parameter >s 0 that regulates the expected cur-
vature angle at a given vertex in which the random walks and polygons are
generated one edge at a time using conditional probability density functions.
Our generating algorithms also allow the generation of unconfined random
walks and polygons with any desired mean curvature angle. In the case of
random walks and polygons confined in a sphere of fixed radius, we observe
that, as expected, stiff random walks or polygons are more likely to be close to
the confinement boundary. The methods developed here require that the
random walks and random polygons be rooted at the center of the confinement
sphere.
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1. Introduction

It is well known the packing of genomic material (long DNA chains) inside living organisms
can be highly compact. For example, even in the case of a simple organism such as the P4
bacteriophage virus, the DNA packing is of high density: its 3 μm long double-stranded DNA
is packed within a bacteriophage head capsid with a caliper size of about 50 nm, corre-
sponding to a 70-fold linear compaction [10]. Understanding how DNA is packed under these
extreme conditions is a very important yet difficult problem in molecular biology. It has been
suggested that the topological information of the DNA packed inside a tight volume such as a
bacteriophage head capsid can be used as a probe in studying the packing mechanism of the
DNA [1]. Indeed, the topological information obtained from the circular DNA extracted from
a phage head capsid revealed a high percentage of complicated knots and a lack of certain a
chiral knots [1]. Such information can be used to refute or support a DNA packing model for
the bacteriophage. For example, in [11] Marenduzzo et al used semiflexible chains of beads
as models of DNA to demonstrate that DNA–DNA interactions may be responsible for the
DNA knotting patterns observed in bacteriophage capsids reported in [1].

In [6, 7, 9] the authors introduced models of equilateral random polygons in spherical
confinement as well as algorithms for generating these random polygons. One motivation for
studying a confined equilateral random polygon model is the above DNA packing problem
and more generally the study of the properties of long polymer chains subject to a tight
confinement condition. Here, confined random walks and polygons (and their variations)
provide a modeling tool in understanding and analyzing such problems numerically. In
general, a random walk with certain bending rigidity at the vertices (also called a wormlike
chain) is more preferable in modeling objects such as polymer or DNA chains due to their
local rigidity. This brings in the problem of how to generate confined equilateral random
walks and polygons. Without any additional restrictions, an equilateral random walk has an
average curvature angle of π 2 at each vertex, while an equilateral random polygon has a
slightly larger average curvature angle at each vertex due to the closed curve effect [15].
Usually, a stiff random walk or polygon simply refers to a random walk or polygon that has a
lower average curvature when compared to the unconditioned random walks and polygons.
When generating a random walk or polygon confined in a tight volume without considering
the stiffness factor, the volume constrain forces the random walks and polygons to bend more.
This is rather intuitive and is indeed observed in [8]. Thus the random walks and polygons
generated using methods from [6, 7, 9] are not good candidates to model polymer chains or
DNA chains that have natural stiffness since they behave very differently in terms of their
geometric and topological properties than random walks and polygons with added stiffness.

Unfortunately, it is not an easy task to generate confined random walks and polygons
even without the added stiffness as the authors had demonstrated in their earlier work
[6, 7, 9]. To the knowledge of the authors, there are no known theoretical probability dis-
tributions of equilateral random polygons with added stiffness and confinement. Instead,
random walks are usually used and various closure schemes are used to measure the knot-
tiness of the random walks generated. See for example [12–14].

In this paper the authors study the generation of confined equilateral random walks and
polygons with a bias toward higher degree of stiffness. The main approach used in this paper
is to modify the generation methods introduced in [6, 7, 9], which rely on the use of explicit
probability density functions that guide the generation of the polygons in an edge-by-edge
manner, to include a parameter that controls the stiffness of the random walks and polygons
generated. We demonstrate that, depending on the local curvature bias used, different stiff
random walks and polygons can be generated even though they may share the same overall
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mean total curvature. In other words, there are many different ways to model confined or
unconfined random walks and polygons with stiffness.

We should point out that our approaches and results are rather theoretical (mathematical).
Although our work is motivated by the DNA packing problem, we do not claim that the
random walks or polygons generated by our algorithms are realistic confined DNA or
polymer chain models. Our intention is only to demonstrate a few approaches on how to
introduce an elevated stiffness in a random walk or random polygon where the degree of
stiffness may be controlled by a parameter. A seemingly setback of our results is that our
generation methods require that the random walks and polygons be rooted at the center of the
confining sphere, which is a strong and artificial condition. However, this paper introduces the
first attempts on adding stiffness to random walks and polygons and some progress has been
made. We should also point out that recently, using a very different approach to generated
random polygons, J Cantarella et al have also proposed a fast algorithm to generate confined
equilateral random polygons [2–4], though it is unclear how suitable it is to introduce an
additional stiffness parameter in that model.

The paper is organized as follows: In section 2 we first study the case of stiff random
walks without confinement. A few examples are discussed and compared. In section 3 we
introduce confinement to our model of random walks. In section 4 we analyze how to use
such schemas to generate stiff random polygons. Section 5 contains examples of generated
confined random walks and polygons and finally section 6 concludes the paper with some
open questions.

2. Unconfined random walks with a stiffness parameter

In this section, we use three different examples to demonstrate how a‘stiffness parameter’
defined locally at the vertices of a random walk leads to a random walk with an overall
elevated stiffness. Furthermore, we demonstrate that the parameter can be chosen to achieve a
predetermined mean total curvature for the random walks generated. Consider a standard
equilateral random walk Wk of length k. Let X0, X1, ..., Xk be the (consecutive) vertices of the
random walk defined as a Markov chain where each +X j 1 depends only on Xj in the following
way: once Xj is chosen, +X j 1 is chosen uniformly over the unit sphere centered at Xj. Such a
walk can be generated in the following way. Imagine that you have generated Xj in a walk and
are looking to generate +X j 1 on the unit sphere centered at Xj. Now on this sphere, there are
circles of constant curvature (that is with a constant angle θ = ∠ − +X X Xj j j1 1), and these
circles are perpendicular to the previous segment −X Xj j1 . It can be demonstrated that if we
select a value for θ ∈ −cos( ) [ 1, 1] with uniform probability, and then randomly choose a
point on the resulting constant curvature circle, we select all points on the sphere with equal
probability (for example, this fact can be found in [9]). The random walk Wk generated in this
way has a mean curvature angle of π 2 with the distribution of the angle θ ranging from 0 to π
given by the probability density function θsin( ) 2.

2.1. A simple cut-off model

We now modify the above to generate random walks by introducing a parameter to leverage
the average curvature. As before Xj has been generated and we want to generate +X j 1. Here is
a simple way to generate a random walk with higher stiffness. Suppose for each step in the
random walk we first choose a τ ∈ −[ 1, 1] and then we choose θ τ∈cos( ) [ , 1]. This is
equivalent to restricting +X j 1 to the spherical cap such that the curvature angle at Xj falls into
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the interval τ−[0, cos ( )]1 . With this approach although any curvature angle is still possible, a
large curvature angle is less likely. Of course, this simple method does not control the
stiffness level since it only generates one kind of random walks. So we modify it by intro-
ducing a (stiffness) parameter ∈ ∞s [0, ). As before at each step choose a value τ with
uniform probability but now from the interval [0, 1]. Next we select θcos( ) also with uni-
formly distributed probability from the interval τ−[1 2 , 1]s . Now the curvature at Xj is θ once

+X j 1 is selected on the constant curvature circle defined by θ with uniform probability. Note
that if s = 0, then the random walk generated has no restriction on its curvature angle and we
obtain the standard random walks without added stiffness (where each +X j 1 is uniformly
chosen over the unit sphere centered at Xj) . For s = 1 we obtain the first schema we described
to increase stiffness, but as → ∞s , θcos( ) is forced to be very close to 1 most of the time,
creating random walks that are extremely stiff. The question is, is it possible to derive an
explicit formula for the expected average curvature as a function of s? If so then we may be
able to choose the s values in order to achieve our desired average curvature values for the
random walks we generate. So in the following we derive the average curvature as a function
of s.

Recall that the angle θ is a random number distributed in π[0, ] such that θ=t cos is
uniformly chosen from τ−[1 2 , 1]s while τ is itself a uniform random variable over [0,1].
Thus for any given ∈ −v [ 1, 1] and any fixed τ ∈ [0, 1], we have τ⩽ ∣ =P t v( ) 0 if

τ⩽ −v 1 2 s (or equivalently if τ ⩽ −( )v s1

2

1
), and τ τ⩽ ∣ = − +

τ
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where τ =f ( ) 1 (for τ ∈ [0, 1]) is the probability density function of τ. For a given
θ π∈ [0, ]0 , we then have
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Hence θg s( , )1 , the probability density function of θ, is

θ

θ θ

θ θ
=

− − =

−
−

− − > ≠
− +g s

s

( , )

sin

2
ln

1 cos

2
, if s 1,

sin

2( 1)
1

1 cos

2
, if s 0, s 1.

s1 1 1

⎜ ⎟

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

For >s 0 and ≠s 1, we have

∫

∫

∫ ∫

∫

∫

∫

θ θ θ θ

θ θ
θ

θ

θ θ θ θ θ θ θ

π θ θ θ θ

π π θ θ

π θ θ

=

= −
−

−
−

= −
−

− −

= −
−

− −

= −
−

− + −

= −
−

−
−

−

π

π

π π

π

π

π

− +

− +

− +

E s g s

s

s
d

s

s
s s

s

s

s

s

( , ) · ( , )d

1

2( 1)
sin( ) 1

1 cos

2
d

1

2( 1)
sin( ) sin( )

1 cos

2
d

1

2( 1)
sin( )

1 cos

2
d

1

2( 1)
2 2

1 cos

2
d

(2 1)

2( 1) 1

1 cos

2
d

s

s

s

s

s

0
1

0

0
1 1

0 0

1 1

0

1 1

0

1

0

1

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

by using integration by parts. Substituting θ= −t (1 cos ) 2 in the above integral then leads
to
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where B x y( , ) is the Beta function. It is known that B x y( , ) is related to the gamma function
Γ z( ) by the identity Γ Γ Γ= +B x y x y x y( , ) ( ) ( ) ( ). Thus we obtain
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For s = 1 the result of the integral ∫θ θ θ θ= π
E g( ) · ( )d

0 1 can be obtained directly using a
software package such as Mathematica. We summarize our results in the following:

For a random walk Wk generated using the cut-off model described in the above, its
expected curvature (per vertex) E W s( , )k1 is given by:
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The plot of E W s( , )k1 is shown in figure 1. It is a decreasing function of s with maximum
π 2 at s = 0 and minimum 0 at = ∞s . Thus it is indeed possible for us to choose a suitable
(and unique) s in order to generate equilateral random walks with a pre-determined average
curvature value.

Of course one may use other ways to introduce a bias towards stiff random walks. In fact,
a close examination of the above example shows that this method still works if we replace the
density function θg s( , )1 by any other density function. For example any non-negative con-

tinuous function θh ( ) from the interval π[0, ] to +0 such that ∫ θ θ =π
h ( )d 1

0
. However, one

needs to be mindful that such density functions may not produce standard equilateral random
walks, even when the random walks so produced show an average curvature (per vertex)
close to π 2. In the following two subsections we show two additional parametrized families
that can be used to introduce a bias towards stiffness.

2.2. A simple exponential density function model

Consider the following family of functions:
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e

e 1
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s
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It is easy to see that g2 is a probability density function for any given >s 0 over the domain
π[0, ]. We leave it to our reader to verify that the expected value for the curvature E W s( , )k2

for >s 0 is given by:

π= −
−

( )E W s
s
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1 1

e 1
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⎝
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⎠

We have π=→ E W slim ( , ) 2s k0 2 and =→∞E W slim ( , ) 0s k2 , as one can easily check.
However for s = 0, we have θ π=→ glim ( , 0) 1s 0 2 . Recall that for the equilateral random
walks without a stiffness bias, the corresponding density function for the curvature angle θ at

Figure 1. The expected average curvature for the three models.
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each vertex is θsin( ) 2 (over π[0, ]). Thus with this approach non-standard random walks are
generated where at each step the next vertex is not chosen uniformly from the unit sphere
centered at the current vertex, but instead the next vertex is chosen such that the curvature
angles are uniform over π[0, ]. That means very small turns and very large turns have a much
higher probability of occurrence than they would normally have.

2.3. A refined exponential density function model

Here we consider the following family of functions:

θ
π θ
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+

+

θ π− ( )
( )

g s
s
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e sin( )

1 e
.

s
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It is easy to see that these are probability density functions over the domain π[0, ]. The
expected value for the curvature E W s( , )k3 for >s 0 is given by:
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1 e
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Again we have π=→ E W slim ( , ) 2s k0 3 and =→∞E W slim ( , ) 0s k3 . Furthermore the function
g3 is continuous in s with θ θ=g ( , 0) sin( ) 23 . So in this case when the stiffness bias
vanishes, we do get the standard equilateral random walks. The plot of E W s( , )k3 , together
with the plots of E W s( , )k1 and E W s( , )k2 , is shown in figure 1.

2.4. Numerical comparison of the three models

From the plots of these functions in figure 1, the average curvature of random walks in all
three models are strictly decreasing functions of s with π= =E W s( , 0) 2j k and

=→∞E W slim ( , ) 0s j k . This common feature is what we aimed at from the beginning. Notice

that their rates of decrease (as → ∞s ) are different. We have =→∞lim 2s
E W s

E W s

( , )

( , )
k

k

3

2
and

≈→∞lim 0.886294s
E W s

E W s

( , )

( , )
k

k

1

2
. Also, the probability density functions used are very different.

Figure 2 shows two examples of these three density functions, one for s = 2 and one for s = 3.
The point is that if the only objective is to generate random walks with stiffness, then there
can be many choices.

Figure 2. The probability density functions θg s( , )1 , θg s( , )2 , and θg s( , )3 for s = 2

and s = 3.
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Finally, we demonstrate how the increased stiffness affects the average radius of gyration
of the random walks. We only use the cut-off model here for this demonstration. Figure 3
shows the average squared radius of gyration where each data point is computed from a
sample of ten thousand random walks Wk. In the figure ∈k {10, 20, 30 ..., 300} and stiffness

∈ …s {0, 1 2, 1, 3 2, , 10}. The two variable simple best fit function
≈ + −r s k0.284( 1)( 14.017)gyr

2 yielded ≈r 0.99922 . Similar behavior is observed in the
other two models.

3. Stiff equilateral random walks in confinement

Now we adapt the models in section 2 to generate a stiff random walk in confinement. We
assume that we are given some probability density function of the curvature angle θ at any
vertex. In this section this probability density function is simply called θg s( , ). For example,
this could be any one from the three models in section 2. Let SR(O) be a confining sphere
centered at the origin O with radius ⩾R 1. Assuming that the vertices =X O0 , X1, X2, ...,

−Xk 1, Xk have been generated and we need to generate +Xk 1 there are two different methods
(conditions) in choosing the next vertex which were discussed in [6, 9]:

Condition (r): the next vertex +Xk 1 is generated subject to the conditions that X0, X1, ... ,
+Xk 1 form an equilateral random walk contained within the confining sphere SR(O).
Condition (a): the next vertex +Xk 1 is generated subject to the conditions that X0, X1, ...

Xk, …+X X, ,k n1 form an equilateral random walk contained within the confining
sphere SR(O).

The letters r and a are referring to the fact that the confining sphere acts in a way similar
to a reflective surface in the first case and an absorbing surface in the second case. Both
methods lead to the standard unconfined random walk when R is larger than the length of the
random walk. However in the first definition, we only need to make sure that the next vertex

+Xk 1 generated satisfies the condition that ∣ ∣ ⩽+X Rk 1 while in the second definition, +Xk 1 is
rejected if any of the vertices +Xk 2, ..., Xn is not bounded in SR(O). Clearly the exact positions
of +Xk 2, +Xk 3, ..., Xn are not known when the position of +Xk 1 is generated but different sets
of potential positions for +Xk 2, +Xk 3, ..., Xn strongly influence the conditional probability
density function that determines the position of +Xk 1. For a more detailed discussion see [6].

Figure 3. The effect of the stiffness parameter on the radius of gyration.
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In this article we only pursue condition (r) in the case of random walks to keep the involved
probability density function as simple as possible. We describe a simple approach to intro-
duce a bias toward lower curvature by scaling the given probability density function θg s( , )
of the curvature angle θ based on the portion of space available for +Xk 1 within the
confinement.

Assume that = −u Xk 1 and =v Xk have been generated and let θ be the curvature angle at
v. Let θC ( )w be the circle on the unit sphere centered at v such that the angle between ⃗uv and

⃗vz is θ for any z on this circle. Thus = +w Xk 1 lies on the circle θC ( )w . Let T be the center of
θC ( )w (which is not to be confused with v) and let r1 be the radius of θC ( )w . Depending on the

location of the vertices u and v the circle θC ( )w may have a portion outside of the confinement
sphere SR(O). In the case that part of θC ( )w is outside the confinement sphere, let α be the
angle of the arc of θC ( )w contained in SR(O). The length of this arc is αr1.

To compute α consider a plane P containing the circle θC ( )w (see the left of figure 4) and
consider the circle CQ which is the intersection of P and the confinement sphere S (0)R . CQ is
centered at Q and has radius r2. The distance ∣∣ ∣∣QT is called d.

From the triangle shown in the left side of figure 4 we obtain

α =
+ −− d r r

r d
2 cos

2
,1

2
1
2

2
2

1

⎛
⎝⎜

⎞
⎠⎟

and the proportion of θC ( )w within the confinement sphere is

θ
α
π π

= =
+ −−p u v R

r

r

d r r

r d
( , , , )

2

1
cos

2
.1

1

1
2

1
2

2
2

1

⎛
⎝⎜

⎞
⎠⎟

By definition θ θ= = −r sin( ) 1 cos ( )1
2 . To compute d and r2 note that the vector ⃗OQ

is perpendicular to the plane P and so is ⃗uT and consider a projection into the plane ′P which
is perpendicular to the plane P and which contains ⃗OQ and ⃗uT (see the right of figure 4). The

Figure 4. Left: the planar view of the circle θC ( )w with radius r1 in the plane P that
contains it. The larger circle with radius r2 and center Q is the intersection of P and the
confinement sphere SR(O). Right: a projection into a plane perpendicular to P and
containing the segment uv and the segment OQ. The intersection of the two planes
contains the projection of both circles θC ( )w and CQ (the line segment AB in the figure).
Here we see a unit circle centered at v, and a circle of radius R centered at the origin O.
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intersection of P and ′P contains the projection of both circles θC ( )w and CQ given by the line
segment AB in the figure. ∣∣ ∣∣AB = ∣∣ ∣∣BT + ∣∣ ∣∣TQ +∣∣ ∣∣QA = + + >r d r r21 2 2. Thus when
part of θC ( )w lies outside the confinement sphere SR(O), we have < +r r d2 1 . Note that O, u,
and v are never colinear if θC ( )w is partially contained in SR(O), since colinearity would lead
to concentric circles θC ( )w and CQ.

Since ⃗OQ and ⃗uT are parallel to each other d can be computed from simple geometry as
ξ ξ= ∣∣ ∣∣ = ∣∣ ∣∣ ∣∣ − ∣∣ = ∣∣ × − ∣∣d u u v u u v usin( ) · sin( ) ( )1 1 (since ∣∣ − ∣∣ =v u 1), see

figure 4 on the right . Similarly, let t be the distance shown in the right side of figure 4, then

ξ= ∣∣ ∣∣ = −t v v v ucos( ) · ( )2 , and θ= − +r R t( cos( ))2
2 2 , where θ = − ∣∣ ∣∣TVcos ( ) .

Combining and simplifying then leads to

θ
π

θ
θ

= + − + +−p u v R
d R t t

d
( , , , )

1
cos

1 2 cos( )

2 sin( )
(1)1

2 2 2⎛
⎝⎜

⎞
⎠⎟

and this expression depends only on u, v, θ and R. In other cases θC ( )w lies either completely
inside or completely outside the confinement sphere SR(O), hence θp u v R( , , , ) either takes
the value of zero or one. We need to find out when to use what. Clearly, if ∣∣ ∣∣ + ⩽v R1 , then

θC ( )w lies completely inside SR(O) so θ =p u v R( , , , ) 1. Thus we only need to consider the
case ∣∣ ∣∣ > −v R 1 so that the unit sphere S v( )1 intersects SR(O), see figure 5. As shown in the
figure, in this case there exist two curvature angle values θm and θM such that if θ θ< m, then

θC ( )w is completely outside SR(O), if θ θ> M then θC ( )w is completely inside SR(O) and if
θ θ θ< <m M , then θC ( )w is partly inside and partly outside SR(O). To compute the angles θm

and θM let us first consider the special case when points u v, and the origin O are collinear. In

this case we have the angle between ⃗vA and ⃗Ov is θ θ θ= = *m M and

Figure 5. A planar view of the intersection of S v( )1 and SR(O) on the plane defined by
u v, and O. The line segment AD is the projection of the intersection circle of S v( )1 and
SR(O). The smallest and largest curvature angles θm and θM at the vertex v are shown
together with the segments AB and CD, which are are the projections of θC ( )w M and

θC ( )w m respectively.

J. Phys. A: Math. Theor. 48 (2015) 095202 Y Diao et al

10



θ = − −− R v

v
* cos

1

2
.1

2 2⎛
⎝⎜

⎞
⎠⎟

If the three points u v, and the origin O are not collinear then we can think of the segment uv
as being rotated by an angle β (as shown in figure 5) around the vertex v from the collinear
position. It follows that θ θ β= ∣ − ∣*m and θ β θ π β θ= + − +min ( *, 2 ( *))M , where

β = −− v u v

v
cos

( ) ·
.1

⎛
⎝⎜

⎞
⎠⎟

Combining this with equation (1) we get (under the assumption that ∣∣ ∣∣ > −v R 1)

θ

θ θ

π
θ

θ
θ θ θ

θ θ

=

<

+ − + + ⩽ ⩽

>

−p u v R
d R t t

d
( , , , )

0, ,

1
cos

1 2 cos( )

2 sin( )
, ,

1, .

(2)

m

m M

M

1
2 2 2

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

This allows us to produce an unnormalized cumulative probability density function by the
following integral:

∫θ ϕ ϕ ϕ=
θ

f u v R g s p u v R( , , , ) ( , ) · ( , , , )d . (3)
0

We can then normalize θf u v R( , , , ) to a obtain a cumulative probability density function for
the probability:

θ ϕ θ θ
π

= ⩽ =F u v R
f u v R

f u v R
( , , , ) Prob( )

( , , , )

( , , , )
. (4)

θF u v R( , , , ) is then used to generate the next vertex +Xk 1 by the following procedure. To
pick the next curvature angle θ we choose a value ∈y [0, 1] with uniform probability and
approximate −F u v R y( , , , )1 (u, v R are fixed here so F is an increasing function of θ) using a
simple bisection method until we have obtained a curvature angle θ with a desired precision.
Once the curvature angle θ is determined, we then find the circle θC ( )w and we choose +Xk 1

uniformly from the portion of it that is inside the confinement sphere.

4. Stiff equilateral random polygons in confinement

By definition, a random polygon is a random walk conditioned on the closure, namely that the
last vertex of the random walk be the same as its starting vertex. Thus, closing the random
walks by a closure scheme such as those discussed in [12–14] would not generate ‘true
random polygons’. The generation of a random polygon is possible, at least in theory, if the
probability density distributions of the vertices of the corresponding random walks are known
as the authors have demonstrated in [6, 7, 9]. Unfortunately for the random walks generated
using the methods in the previous sections, theoretical probability density functions of the
vertex distributions are not known and we could only estimate the probability density dis-
tributions of the vertices numerically (which we will not do in this paper due to its com-
putational complexity). However we can force a stiff random walk to close by using any
conditional probability density functions that force our standard random walks to close. The
conditional probability density functions used in this section are for demonstration purposes
and the stiff confined random polygons so generated are not the counterpart of the stiff
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random walks generated in the earlier examples. However if the conditional probability
density functions from these stiff random walks are used instead, then the generation method
described in this section would at least generate the stiff random polygons with the right
vertex distribution in terms of the distance of the vertex to the center of the confining sphere.

In the algorithms described in [6–9] of these algorithms a random polygon is generated
one edge at a time. More specifically, if v is the last vertex generated then the next vertex w is
generated by choosing = ∣∣ ∣∣ ∈ ∣∣∣ ∣∣ − ∣ ∣ ∣ +r w v R v[ 1 , min ( , 1)] first according to its
probability density function (conditioned at the vertex v). w is then chosen uniformly on the
circle ∩=C v S O S v( ) ( ) ( )r r 1 . This generation process guarantees the closure of the polygon
at the end and the polygon is generated according to its theoretical probability distribution.
Our approach is to keep the first step of the methods in [6–9], namely to choose r first using
its probability density function derived there, as this guarantees the closure of the polygon at
the end. We assume that we are given a conditional probability density function ∣h r t( )k that
describes the probability distribution of = ∣∣ ∣∣r w given that (i) = ∣∣ ∣∣t v and (ii) we have k
steps to take before we have to arrive back at the origin in order to close the polygon. We
achieve the stiffness effect by choosing first the circle Cr(v) and then by choosing w on Cr(v)
using a probability density function θg s( , ) that favors low curvature such as those discussed
in section 2.

Recall that θp u v R( , , , ) is the proportion of θC ( )w that is within the confining sphere. If
we replace R by r, then θp u v r( , , , ) gives the proportion of θC ( )w within the sphere Sr(O).
For the confined random walks, the rescaling approach used in the last section leads to

∫ θ θ θ⩽ = =
π

w r u v P r g s p u v rProb( , ) ( ) ( , ) · ( , , , )d . (5)w
0

Pw(r) is a cumulative probability density function in the variable r, i.e. =P r( ) 0w for
⩽ ∣∣ ∣ − ∣r v 1 and =P r( ) 1w for ⩾ ∣ ∣ +r v 1. The purpose of deriving Pw(r) is so that we can

use ′P r( )w to rescale the probability density function of w as a vertex of a confined random
polygon. More precisely, assume that there are k vertices left in the polygon to be generated
and let ∣h r t( )k be the conditional probability density of w conditioned on ∣∣ ∣∣ =v t , ∣∣ ∣∣ ⩽w R
and that the polygon is to be closed in k steps. Then we define the rescaled probability density
function of w by

= ′h r t
a k t

P r h r t( )
1

( , )
( ) ( ),k s w k,

*

where

∫= ′a k t P r h r t r( , ) ( ) ( )d ,
I

w k

is the re-normalization constant and = ∣∣∣ ∣∣ − ∣ ∣ ∣ +I v R v[ 1 , min ( , 1)]. ∣h r t( )k s,
* is now a

probability density function that given a current position ∣∣ ∣∣ =v t , the previous position u, a
stiffness parameter s, and the number k of steps left before returning to the origin allows us to
choose the circle Cr(v) as the set of possible locations of w. Of course, in order to do this we
need to integrate ∣h r t( )k s,

* to obtain the cumulative probability density function to be used for
an inverse look-up by a bisection method. Due to the complexity of the integrals involved
these computations can only be done numerically.

There are several steps involved in deriving a probability distribution for correctly
choosing the θ to pick w on Cr(v). First we need to modify θg s( , ) to account for the fact that
for every θ there are now at most two points on Cr(v) with a fixed curvature as opposed to
circles of varying sizes on the unit sphere. Second, we need to determine the probability
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density function for the curvature angle θ over the points on Cr(v). And third, we need to
determine the range of possible θs for the given u, v, and Cr(v). Each of these is addressed
separately in the following paragraphs.

First we need to generate w on Cr(v) with the same distribution as if we had randomly
sampled points according to the stiffness probability density function θg s( , ) (restricted to
only those points that lie on Cr(v)). If we were to sample points on the unit sphere S v( )1 with
uniform probability using spherical coordinates θ ϕ( , ) where θ is the curvature angle and ϕ is
an angle that is uniformly chosen in π[0, 2 ) and were to select a specific point from the circle
of points resulting in a fixed constant curvature θ then the size of that circle changes pro-
portional to its radius θsin( ). To adjust θg s( , ) so that it reflects the probability distribution of
curvatures represented along the circle Cr(v), we divide it by θsin( ) and renormalize to obtain

θ θ
θ

=p g s
b

( ) ( , ) ·
1

sin( )
·

1
,c

where ∫ θ θ= π
θ

b g s( , ) · d
0

1

sin( )
is the normalizing constant.

Second, to represent the relative availability of points with given curvature along the
circle Cr(v), we need to determine how the probability distribution for θ changes with a point
x moving from B to A on the projection of Cr(v), see figure 6 for the a visual display of the
various variables we will be using. Let x be a given point on AB as shown in figure 6 (on the
right and the left). For the determination of x we pick a projection such that v = {0, 0} and O

is on the negative y-axis. Simple geometry leads to θ=r sin( *)c and γ=x r cos( )c where by a
slight abuse of notation ∣ ∣x represents the distance from v to x as shown in figure 6 on the left
or the distance from the y-axis to x along the line segment AB in figure 6 on the right. The
angle marked β in this figure 6 is the same as in figure 5 which was computed in the previous

section as β = − −
∣∣ ∣∣( )cos v u v

v
1 ( )· . θ* is also the same as in figure 5, except we use r instead of R

to compute is as θ* = − − − ∣∣ ∣∣
∣∣ ∣∣( )cos r v

v
1 1

2

2 2

.

Figure 6. On the left a projection of the circle Cr(v) into the plane perpendicular to ⃗Ov.
The points A B, correspond θcos( )M and θcos( )m respectively. On the right, the plane
normal to the circles Cr(v) (projected to AB) and θC ( )w (projected to ′ ′A B ). The
projection onto the plane is selected to set up a coordinate system indicated by the
dashed lines: v is at {0, 0} and the origin is on the negative y-axis. The detailed
derivation in the text assumes that u is to the left of v.
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We now have

ϕ θ ϕ γ
γ
π

γ
π π

⩽ = ⩽ = = = −r

r

x

r
Prob( ) Prob( )

2

2

1
cos .c

c c

1
⎛
⎝⎜

⎞
⎠⎟

To express x in terms of u, v, r, and θ we determine x as the intersection of the projection
of Sr(v) and θC ( )w which are the line segments AB and ′ ′A B in figure 6 on the right which
shows a plane which is perpendicular to Cr(v) and contains u, v, and O. If u is to the left of v
and β π≠ 2 then the slope of the line going through ′ ′A B( , ) is β−tan ( ). (This follows from
the fact that the slope of the line through u and v is βcot ( ).) The coordinates of the point A′
are π β θ π β θ− + − − +(sin( ), cos( ) = β θ β θ− −(sin( ), cos( ). Thus the line through A′
and B′ has equation β β β θ β θ= − + − + −y xtan ( ) tan ( ) sin( ) cos( ). The equation of the

line AB representing the projection of the circle Cr(v) is y = θcos( *).Solving for x results in

β β β θ β θ θ= − + − −( )( )x cot ( ) tan ( ) sin( ) cos( ) cos * .

Substituting this in for x gives us

ϕ θ
π

β β β θ β θ θ
⩽ =

− + − −
−

( )( )
r

Prob( )
1

cos
cot ( ) tan ( ) sin ( ) cos ( ) cos *

.
c

1

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

Taking the derivative and simplifying we obtain a (non-normalized) probability density
function pc for θ on Cr(v)

θ θ

π β θ β θ θ

=

− −( )( ) ( )
p ( )

sin( )

sin ( ) sin * cos( )cos * cos( )

.c

2 2
2

If β π= 2 then x = β θ−sin( ) = θcos( ). Taking the derivative of
π

− ( )cos x

r

1 1
c

leads to

and θp ( )c = θ

π θ θ−*

sin( )

sin ( ) cos ( )2 2
which is the same as the above, if β is replaced by π

2
.

We now scale the adjusted stiffness pdf by the availability of points to get the probability
distribution for curvatures at a given next radius.

θ
θ θ θ θ θ

θ θ θ θ π
=

⩽ ⩽
< < < ⩽

P v u r
p p

( , , )
( ) · ( ), if ,

0, if 0 or ,
c

c
m M

m M

⎧⎨⎩
where θm is the value of θ when x is at B in figure 6 and θM is the value of θ when x is at A.
Integrating and normalizing gives us a cumulative probability density function that allows us
to choose a curvature θ θ θ∈ [ , ]m M that can occur on Cr(v).

∫

∫
ϕ θ

ϕ ϕ

ϕ ϕ
⩽ = θ

θ

θ
θ

P v u r

P v u r
Prob( )

( , , )d

( , , )d
.m

m

M

Notice that if θ θ θ≠ ,m M , there are two points on Cr(v) which satisfy the radius and
curvature conditions, and we may uniformly choose one of them.

This only leaves the determination of the range of possible θ associated with a given r. θm

is the smallest θ which results in a point on Cr(v) and is the angle between ⃗uv and ⃗vB in the
projection of Cr(v). Similarly, θM is the largest θ which results in a point on Cr(v) and is the
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angle between ⃗uv and ⃗vA in the projection of Cr(v). Using the β and θ* computed earlier we
have

θ β θ
θ β

β θ
= − =

− − >

− − ⩽

f v u r

f v u r
*

* , i 2 ,

*, i 2 ,
m

⎪
⎪

⎧
⎨
⎩

and

θ β θ
π β θ β θ π

β θ β θ π
= + =

− + + >

+ + ⩽

( )*
2 * , if * ,

*, if * .
M

⎧
⎨⎪
⎩⎪

Note that θm and θM only depend on u, v, and r which are all available after r has been
picked.

A similar derivation for the case that u is to the right of v results in a sign change for x
and θp ( )c and finally to the same results for θm and θM and ϕ θ⩽Prob( ).

The above discussion works for u to the left or the right of v, but not if u, v and 0 are co-
linear. Remember that if u, v, and O are co-linear, and ∈r I then the circle θC ( )w of constant
curvature θ and the intersection circle Cr(v) of constant given distance r from the origin are

concentric circles. Furthermore, they are identical for θ0= − − − ∣∣ ∣∣
∣∣ ∣∣( )cos r v

v
1 1

2

2 2

. For θ larger

(smaller) than this computed threshold θ0, θC ( )w is completely inside (outside) Sr(v) and for θ
smaller (larger) θ0, θC ( )w is completely outside (inside) Sr(v) if ∣∣ ∣∣Ou is smaller (larger) than
∣∣ ∣∣Ov . Thus equation (5) simplifies to

∫

∫

θ θ

θ θ
=

∥ ∥ ⩽

∥ ∥ >

θ

π

θ
P r

g s f Ou Ov

g s f Ou Ov

( )

( , )d , i ,

( , )d , i .
w

0

0

0

⎧
⎨
⎪⎪

⎩
⎪⎪

We adjust and rescale Pw(r) to obtain a probability density function ∣h r t( )k s,
* to pick the

next r as before and then randomly pick a point from the resulting circle of intersection Sr(v),
since all points on it have constant curvature.

5. The effect of stiffness on the geometry of random walks and polygons

5.1. Random walks

Intuitively, we expect the effect of stiffness in confinement to push the random walk towards
the boundary. If we consider three consecutive vertices of a walk along the boundary of the
confinement sphere then the curvature angle of − R2 sin (1 (2 ))1 depends only on the con-
finement radius R. We expect the mean curvature of the random walk to converge to this
value as the stiffness increases. figure 7 shows this effect for the refined exponential model
and figure 8 shows the effect of confinement on the distribution of the curvature angle for the
cut-off model. The blue curve shows the theoretical angle distribution function without
confinement. This shows that the confinement shifts the angle distribution towards larger
angles. Finally, figure 9 shows the effect of confinement on the distribution of vertices for the
refined exponential model. The blue curve for s = 0 shows the theoretical vertex distribution
of the random walk in confinement. This shows that the increasing stiffness pushes the
vertices towards the boundary of the confinement sphere.
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Figure 7. Examples of six random walks of length 40 using the refined exponential
model with stiffness values =s 1, 2, 4, 8, 16 in a sphere with radius of confinement
R = 3. The walk on the bottom right has length 100, stiffness S = 32 and radius of
confinement R = 5.

Figure 8. Examples of the angle distribution using the cut-off model with stiffness
values =s 0, 1, 2, 10. The radius of confinement is R = 3. Each example is based on a
random walk of length ten thousand steps.
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Figure 9. Examples of the vertex distribution using the refined exponential model with
stiffness values =s 0, 1, 2, 10. The radius of confinement is R = 3. Each example is
based on a random walk of length ten thousand steps.

Figure 10. Examples of six random polygons of length 30 using the refined exponential
model with stiffness values =s 1, 4, 8, 16, 32 and 64. The radius of confinement
is R = 2.
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5.2. Random polygons

Just as in the case for random walks, we expect the effect of stiffness in confinement to push
the random polygon towards the boundary. Figure 10 shows this effect for the refined
exponential model using the volume functions of [6] for the polygon generation. The random
polygons have length 30 and are in a confinement sphere of radius 2. We can clearly spot the
origin where the polygons are rooted for stiffer polygons with s values of up tp s = 64.
Unfortunately our method does not allow us to control the curvature angle at the root of the
polygon.

6. Conclusions and open questions

Following our earlier methods [6–9], we explored in this paper the generating method of
equilateral random walks and polygons confined within a sphere (and rooted at the center of
the polygon) with a stiffness parameter that can be chosen by the user. We showed how the
stiffness affects the shape of walks and polygons. Many questions remain to be answered. For
example, the polygons are rooted at the center of the confining sphere which generates a
vertex with a potentially very large curvature angle. Can our algorithms be modified to avoid
this problem? The algorithms presented here have a relatively large run time, is it possible to
speed up the calculations? Finally, in [5] the authors study the knot spectrum of random
polygons in confinement to address questions like the following: How fast does confinement
increase the probability of knotting? What types of knots appear in confined polygons? The
methods in this paper will allow us to also study the question: How does stiffness affect the
probability of knotting? What is the effect of stiffness on the knot types of stiff random
polygons? Finally, we can ask if the knot types of stiff polygons match the knot types
observed experimentally in [1]. (It is known that the knot types observed without a stiffness
parameter do not match the experimental results [5].) These are a few directions that we
intend to pursue in the future.
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